《加法运算定律》数学教案

时间:2024-06-04 19:30:48
《加法运算定律》数学教案

《加法运算定律》数学教案

在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。如何把教案做到重点突出呢?下面是小编精心整理的《加法运算定律》数学教案,希望对大家有所帮助。

《加法运算定律》数学教案1

教学目标

1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.

2.培养学生仔细、认真的学习习惯.

3.培养学生观察、演绎推理的能力.

教学重点

整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

教学难点

整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

教学过程

一、复习准备【演示课件“整数加法运算定律推广到分数加法”】

1.教师:整数加法的运算定律有哪几个?用字母怎样表示?

板书:a+b=b+a

(a+b)+c=a+(b+c)

2.下面各等式应用了什么运算定律?

①25+36=36+25

②(17+28)+72=17+(28+72)

③6.2+2.3=2.3+6.2

④(0.5+1.6)+8.4=0.5+(1.6+8.4)

教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.

二、学习新课【继续演示课件“整数加法运算定律推广到分数加法”】

1.出示:下面每组算式的左右两边有什么关系?

○○

教师说明:整数加法运算定律,对分数加法同样适用.

教师提问:整数加法的运算定律可以在什么范围内使用?

(加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)

2.出示例3计算:

观察:这些加数分母和分子有什么特点?

思考:怎样可以使计算简便?

学生口述,教师板书:

教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?

最后结果要注意什么问题?

学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.

三、巩固反馈.

1.在下面的○里填上合适的运算符号.

①○

②○

2.用简便方法计算下面各题.【继续演示课件“整数加法运算定律推广到分数加法”】

①②

3.思考题:

已知你能很快算出的和吗?

四、课堂总结.

整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.

五、布置作业.

用简便方法计算下面各题.

六、板书设计

《加法运算定律》数学教案2

教学目标

1、通过尝试解决实际问题,观察,比较发现并概括加法交换律。

2、初步学习用加法运算定律进行简便计算,并用来解决实际问题。

3、提高观察、概括能力和语言表达能力。

教学重难点

初步学习用加法运算定律进行简便计算,并用来解决实际问题。

教学工具

课件

教学过程

(一)谈话导入,

孩子们你们知道我们班上有多少小女孩?多少小男孩?那么我们班上一共有多少个孩子?

学生列式,师板书

(二)呈现事实,形成问题

1、出示准备题:

(1)27+73(2)37+58

73+27 58+37

2、学生计算得数。

3、请学生观察两组算式,说说有什么发现?

投影书上的主题图,

你搜集到了什么信息?

今天李叔叔一共骑了多少米?根据学生回答板书:40+56=96千米

56+40=96千米

和前面的两个例子比较你发现了什么?、

4根据学生回答板书:猜想——两个数相加,交换加数的位置它们的和不变。

既然和不变,每组算式可以用什么符号连接呢?(=)

5、问题:这个猜想正确吗?

(三)验证猜想,形成结论

1、验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

让学生举例,

如35+20=20+35等等让学生多说

同桌互说

学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

2、同学自己设计一组式题验证,小组交流结果,汇报结论。

3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例子

全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

(1)口答列式:476+518518+476

为什么这样列式?

(2)判断:得数会相同吗?

(3)计算结果,得出结论:476+518=518+476

在加法中,交换加数的位置,和不变。

4、揭题:这就是我们今天要学习的“加法交换律”(板书)

5这种规律在其他运算中有吗?学生质疑,验证。在这个环节中有出现个别代表一般的给予举例纠正。

学生自学书本、质疑。

6、小结:

(1)什么是加法交换律?

用字母a、b表示加法交换律。板书:a+b=b+a

(四)应用成果,巩固新知

1、学习加法交换律的最终目的是用。

问:验算加法,我们用什么方法?根据什么?

2、“练一练”1,先计算出得数,再用加法交换律进行验算。

问:验算方法运用什么运算定律?

3、“练一练”

(1)分组完成。(每组一生板演,比赛形式进行)

(2)指名说出验算方法和根据。

4、放录音、做游戏——“我该在什么位置”

(1)将卡片470、880、1013、214、58、58发给六个同学。

(2)伴随音乐,寻找自己的位置,并贴上。

(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。

(五)反思过程,学会学习

1、这节课我们发现了什么?是怎样获 ……此处隐藏1865个字……

探究新知2:加法结合律

情境导入:

问李叔叔这三天一共骑了多少千米?

1、理解题意

师:要求三天一共骑了多少千米,就是求第一天所骑的加上第二天再加上第三天所骑的所有路程是多少,列式:88+104+96

2、解答:

方法一:按从左往右的顺序:

88+104+96

= 192+96

= 288(千米)

方法二:观察算式中96+104正好等于200,所以可以先把后两个数加起来,再加上他们的和。

即:88+104+96

= 88+(104+96)

= 88+200

= 288(千米)

答:李叔叔这三天一共骑了288千米。

3、发现规律

观察两种解题方法,发现:一是先把前两个数相加,再加上第三个数,方法二是先把后两个数相加,再和第一个数相加,他们的计算结果相同,因此,

可以写成等式(88+104)+96=88+(96+104)

归纳总结2:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这个叫加法结合律。

4、用字母表示定律

如果用a,b,c表示任意三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)

板书:加法结合律(a+b)+c=a+(b+c)

活学活用:

有三块布,第一块长68米,第二块长59米,第三块长41米,那么三块布一共有多长?

68+(59+41)

= 68+100

= 168(米)

答:三块布一共有168米

探究新知3:加法中的简便运算

下面是李叔叔后四天的行程

1、理解题意

师:要想求李叔叔后四天还要骑多少千米,只要把后四天所有的路程加起来就行了,列式为:115+132+118+85

2、观察算式特点

师:同学们,仔细观察发现,115与85能凑成整百数,132与118能凑成整数,因此用加法交换律和加法结合律就能把式子改写为:

115+132+118+85

= 115+85+132+118

加法交换律=(115+85)+(132+118)

加法结合律

= 200+250

= 450

3、解答

115+132+118+85

= 115+85+132+118

=(115+85)+(132+118)

= 200+250

= 450(千米)

归纳总结:

在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。

活学活用:

丁杰看一本故事书,第一天看了62页,第二天看了93页,这时还剩下138页没有看,这本故事书一共有多少页?

答案:62+93+138

=(62+138)+93

= 200+93

= 293(页)

答:这本故事书一共有293页。

探究新知4:连减的简便运算

情境导入

一本书一共有234页,还有多少页没看?

1、理解题意

师:已知总页数是234页,减去昨天和今天看的,就是剩下的。

2、列式子

解法一:(1)今天看的66+34=100(页)

(2)剩下的234—100=134(页)

解法二:从总页数中减去今天看的34页,再减去昨天看的66页,

剩下的就234—34—66=134(页)

3、比较发现

比较以上解法得数是一样的,可知:从一个数中连续减去两个数,也就相当于从被减数中减去两个减数的和,在连减算式中任意交换减数的位置,差不变。

即:a—b—c=a—(b+c);a—b—c=a—c—b

活学活用:

妈妈拿100元去超市购物,买蔬菜花了26元,买水果花了24元,还剩多少钱?

答案:100—26—24=50(元)

拓展提升:

1、计算:1+2+3+4+5......+48+49+50

师解析:

方法一:观察这组数据发现,1+50=51,2+49=51,3+48=51…、25+26=51

50个数相加,两两结合为25组,每组的和都为51,这样可以算出答案:51×25=1275

方法二:如果把50个数倒过来写,分别相加,就是50个51相加再除以2,即是答案。

即:1+2+3+4…、+48+49+50

=(1+50)×(50÷2)

=1275

归纳总结:解决问题要动脑,这样会找到多种解决问题的方案,解答时要选择一个最简便的方法。

举一反三:

用简便方法计算:199999+19998+1997+196+95

答案:199999+19998+1997+196+95

= 200000+20000+20xx+200+100—(1+2+3+4+5)

= 222300—15

= 222285

归纳小窍门:当算式中的数字较大时,可以利用估算的思路,把它们都看做是和它们最接近的整百、整千、整万…、的数,计算出结果后,再减去多加的部分。

课后小结

这节课你学会了什么呢?

a、这节课我们学习了加法运算律和加法结合律

用字母表示为a+b=b+a;a+b+c=a+(b+c)

b、数学运算时要选择简便运算方法,在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。

课后习题

1、计算下列算式

138+227+173 69+406+94

答案:138+227+173 69+406+94

= 138+(227+173)= 69+(406+94)

=138+400 =69+500

=538 =569

2、一根钢丝,第一次用去187米,第二次用去145米,这时还剩下113米,这根钢丝全长多少?

答案:187+145+113

=(187+113)+145

= 300+145

= 445(米)

答:这根钢丝全长445米

板书

加法运算律

加法交换律加法结合律

a+b=b+a;a+b+c=a+(b+c)

善于发现简单法,计算准确快又好

《《加法运算定律》数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式